设为首页收藏本站

JMP数据分析论坛

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
热搜: 活动 交友 discuz
查看: 1689|回复: 1
打印 上一主题 下一主题

解码公差设计—(DOE 系列之八)(zt)

  [复制链接]
跳转到指定楼层
楼主
发表于 2013-8-20 20:12:41 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 skyfree 于 2013-8-20 20:14 编辑

试验设计 DOE 常常用在新产品的设计和研发工作中,而产品设计常常可以分为系统设计、参数设计和公差设计(又称容差设计)三个阶段,或称三次设计。所谓系统设计,是指用专业技术研制产品(即样品)及其生产工艺。所谓参数设计,是指确定产品零部件的结构参数和生产过程的工艺参数,选择最佳的参数组合。所谓公差设计,是指对各种参数寻求最佳的容许误差,使得质量和成本综合起来达到最佳经济效益,这是产品设计中不可或缺但又往往被忽略的一个环节容。

公差设计(Tolerance Design)通常是在完成系统设计和参数设计后进行的,此时一般来说,各元件(参数)的质量等级较低,参数波动范围较宽。公差设计的输出结果就是在参数设计阶段确定的最佳条件的基础上,确定各个参数合适的公差。

按照一般原理,每一层次的产品(系统、子系统、设备、部件、零件),尤其交付顾客的最终产品都应尽可能减少质量波动,缩小公差,以提高产品质量,增强顾客满意;但同时 ,每一层次产品也应具有很强的承受各种干扰(包括加工误差)影响的能力,即应容许其下属零部件有较大的波动范围。对于下属零部件通过公差设计确定科学合理的公差,作为生产制造阶段符合性控制的依据。

因此,公差设计的指导思想是:根据各参数的波动对产品质量特性贡献(影响)的大小,从技术的可实现性和经济性角度考虑有无必要对影响大的参数给予较小的公差(例如用较高质量等级的元件替代较低质量等级的元件)。

另外值得注意的是,三次设计的顺序并不是一成不变的。虽然公差设计的实施一般晚于参数设计,但有时为了获取总体最佳,公差设计也会影响参数设计的再实施。公差设计的实现途径很多,比较常见的有极值分析法(Worst Case)、统计平方公差法(Root-Sum-Squares)和模拟法(Simulation)三类,下面将会结合实际案例作各自的说明和相互的比较。在高端六西格玛统计分析软件 JMP 的协助下,公差设计的工作效率更加高速,分析结果更加清晰。在本期的案例分析中,我们将在必要的地方用中英文双语版 JMP 软件作为 DOE 方案实现的载体,值得一提的是,JMP 软件是目前唯一一款集统计分析功能和专业模拟功能于一身的六西格玛统计分析软件,也是目前全球试验设计方法的领导品牌。

一 极值分析法(Worst Case)

极值分析法是目前应用范围最广泛、操作最简便的方法,大多数的设计都基于这个概念。在这种方法中,零部件都设计为名义值,然后假定公差完全向一个或另一个方向积累 ,最终的结果仍能满足产品的功能要求。

在极值分析法分析中主要考虑的是设计规格的线性极值,它虽然确保了所有零件的组合,但往往导致最终结果过于保守,产生过大或过小的公差。而且严格地说,极值分析法并不属于统计方法,但它为后面讲到的统计平方公差法提供了比较的基础,能够帮助我们更好地意识到应用统计方法的好处。我们通过一个典型的机械系统设计案例来加深理解。

场景 :在一个装配环中装入 4 个零件,如图一所示,要求装配间隙 Gap 的目标值 T=0.016,波动范围尽可能小。已知现在的零件 1~4 服从技术规范 1.225±0.003,装配环服从技术规范 4.916±0.003。试问:该系统的的目标值是否达到要求?公差范围是多少?



根据极值分析法的分析思路,
装配环的名义值=4.916 公差=±0.003
零件 1 的名义值=-1.225 公差=±0.003
零件 2 的名义值=-1.225 公差=±0.003
零件 3 的名义值=-1.225 公差=±0.003
零件 4 的名义值=-1.225 公差=±0.003
由此我们可以得到,间隙的名义值=0.016 总公差=±0.015
间隙的最小值=0.001
间隙的最大值=0.031

也就是说,系统的目标值达到了要求,系统的公差范围是[0.001,0.031],然而实际情况果真如此吗?系统中每个零部件出现极值的概率分别只有 0.0027,由此组成的系统(即间隙)出现极值的概率=0.00275=0.000000000000143,几乎接近于 0。这说明,通过极值分析法估算出来的公差范围过大,没有反应系统的真实情况。

二 统计平方公差法(Root-Sum-Squares)
统计平方公差法基于这样一个假设理论:大多数的零部件在它们的公差范围内呈正态概率分布,此时由它们所构成的系统与各个零部件线性相关,则系统的分布也可以用一个正态分布或近似正态的分布来表示。结合上一个机械系统的案例,这个理论可以用图二表示。所谓的统计平方是指系统的方差是其零部件方差之和,
即:   一般假设零部件的公差 ,所以得到系统的统计平方公差:




时候,在同一个机械系统的状况下,根据统计平方公差法的定义公式,

间隙的总公差=
间隙的最小值=0.016-0.0067=0.0093
间隙的最大值=0.016+0.0067=0.0227
也就是说,系统的公差范围变为[0.0093,0.0227],相对于极值分析法的结论,它显得更加接近现实情况。但是,统计平方公差法也存在一个先天性的缺陷:当初始的假定理论不成立,即零部件明显不呈正态概率分布,或者系统与各个零部件呈非线性相关时,原先统计平方公差的计算公式也就不成立了。

三 模拟法(Simulation)
模拟也称仿真,是指通过设定若干个随机变量以及相互之间的关系建立系统的数学模型或逻辑模型,并对该模型进行充分的试验,以获得对该系统行为的认识或者帮助解决决策问题的过程。自上世纪八十年代起,随着电子计算机软硬件的普及,模拟得到了广泛应用,它的操作也越来越简单。
在公差设计时应用模拟技术,分析人员无需组建真实的系统就能够评价模型,或者在不干扰现有系统的情况下对模型进行验证。而且模拟法对零部件的分布和模型的线性性要求较低,比许多其他的分析方法更容易被人理解。

再次借用机械系统的案例,我们首先在高级 DOE 分析软件 JMP 里对装配过程中的各个零部件参数进行设置,一般认为参数服从正态分布,均值等于中心值,标准差为半公差的 1/3 即 (具体操作参见图三)。短短几秒钟后,汇总十万次模拟结果的间隙分布就由 JMP 软件自动生成了。从图四可以看到,通过模拟法得到的系统的公差范围变为[0.009,0.023],与统计平方公差法的结论十分相似,非常接近现实情况。同时,模拟法的分析过程生动形象,由它获取的结果的可读性依然很强。更重要的是,当遇到电子线路等非线性模型时,统计平方公差法已不适用,但模拟法却依然有效 。






以上花了很多篇幅介绍了如何正确地预测系统的公差范围。一旦发现系统的公差范围过大时,应该怎样调整零部件参数的公差设置呢?正如我们所知道的,减少零部件参数的公差会提高质量,减少系统功能波动的损失,但缺憾是往往需要增加成本。通过公差设计 ,可以确定各参数的最合理公差,使总损失(质量损失与材料成本之和)达到最佳(最小)。接 下来将用最简单易懂的模拟法来简要说明。

例如,设定在上述的机械系统中顾客满意的间隙波动范围为[0.012,0.020],显然会有相当一部分产品被判为不合格。如果将各个零部件参数的公差都缩小一半,即
,效果是否会明显改善呢?在高级统计分析软件 JMP 自带的模拟器的帮助下,我们很快会得到如图五所示的缺陷前后对比。间隙地缺陷数量从原先的 74030PPM 迅速下降到改进后的 340PPM,充分说明效果是明显的。如果能够证明因此改进而增加的成本不高时,那我们就更有信心将零件 1~4 的公差范围设定为 1.225±0.0015,装配环的公差范围设定为 4.916±0.0015。


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
分享到:  !connect_viewthread_share_to_qq!!connect_viewthread_share_to_qq! QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏2 转播转播 分享分享 分享淘帖 支持支持 反对反对
回复

使用道具 举报

沙发
发表于 2017-3-29 19:42:36 | 只看该作者
很不错,形象
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|JMP数据分析论坛 ( 沪ICP备13022603号-2 )  

GMT+8, 2024-5-4 04:48 , Processed in 0.210722 second(s), 16 queries .

Powered by Discuz! X3

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表